Taking the sting out of mildness testing

COSMETICS BUSINESS REGULATORY SUMMIT

Dr Carol Treasure
8th October 2019
XCellR8’s mission

To accelerate the world’s transition to 100% animal-free testing through our scientifically advanced and ethical approach.
Satisfy consumer demand for a more ethical supply chain

• We are the only regulator-approved GLP lab globally to make all of our tests 100% animal-product-free, or vegan
 • Our long-standing approach for many years
• We don’t use serum, tissues or antibodies extracted from animals
• This provides a better model of human physiology and higher reproducibility (synthetic components)
• Vegan Society accreditation expected Autumn 2019
What I’ll cover today

1. Why the industry needs a new model to predict mildness to skin
2. What existing methods are available and their limitations
3. How we optimised them to create a new model
4. Correlation between in vitro and in vivo results
5. Real world applications of the model
6. Comparison data between soaps and facial cleansers
Why we need a new method to predict mildness (I)

- World Health Organisation (WHO) has described stress as the “health epidemic of the 21st Century”
- Stress puts our inflammatory reactions on alert and lowers the threshold to elicit a reaction
- Stress makes skin more likely to react and contributes to increased incidence of skin reactions
- Other contributory factors: air pollution; air conditioning; extreme weather; poor diet; chemical exposure (e.g., household products); frequent washing; hormonal changes; underlying skin diseases; occupational exposure
- Skin disorders affect self-esteem, quality of life, physical and mental health

Mildness is a safety and efficacy issue:

Relevant to the scale between stress and wellbeing
Why we need a new method to predict mildness (II)

- Study of 12,377 individuals in Europe*
- Incidence of skin reactions lasting more than 3 days:
 - 19.3% within the last month
 - 31.8% within the last year
 - 51.7% within a lifetime
- Avoidance of daily life consumer products due to skin reactions:
 - 37.0% for skincare
 - 17.7% for “household or functional” products

Why we need a new method to predict mildness (III)

- Increasing demand from consumers for ever milder products, that they feel confident using even when their skin is feeling extra sensitive
- Increasing demand from marketing teams for differentiating claims
- New research project started in 2017, funded by Innovate UK
- Research aims:
 - Optimising \textit{in vitro} and human \textit{in vivo} test methods for maximum sensitivity
 - Assess predictive capacity
 - Real world applications
Existing methods: *In vitro* irritation testing

- 3D human skin models, grown at the air-liquid interface
- Suitable for testing ingredients and finished products
- Applied directly to the tissue surface – good model of “real life” exposure
- Standard regulatory method (OECD TG 439) measures a single exposure time to classify irritants vs non-irritants for hazard identification and labelling purposes
- Validated against historical animal data (Draize test)
- A more sensitive approach is required for today’s mild cosmetic ingredients and formulations beyond a yes/no answer – *how* mild is the test item?
The ET50 method

- Measures cell damage over a time course
- Classifies as Severe, Moderate, Mild or Minimal / Non-Irritant
- ET50 = time taken to reduce the viability of the skin model to 50% compared with untreated controls
- ET50 values allow rank order of irritation to be determined in comparison with other formulations / competitor and market leading products
- Standard methodology limited to 18 hours
How we optimised the test methods *in vitro*

- Development of an extended timepoint *in vitro* 3D model to look at the irritancy potential of ultra-mild test items over 48 hours
- Determination of ET$_{50}$ values for known surfactant controls with a range of irritation potentials
- Development of a prediction model linking the *in vitro* skin irritation ET$_{50}$ method with an *in vivo* human skin patch test model for ultra-mild surfactants
- Creation of a database of industry leading ingredients and formulations to be used as benchmarks in future tests for client companies
How we optimised the test methods *in vitro*

| Test Items | Surfactants: SLS, SLES, CAPB, a novel “mild” surfactant
| | Applied to the skin model surface and incubated for 1, 5, 18, 24 and 48 hours |
| Controls | Negative control: not treated
	Positive control: Triton X-100 (non-ionic surfactant): 1% solution
Measurement	Metabolic activity (conversion of MTT) as an indicator of cell damage
Output	ET50 value (time taken to reduce the viability of the cells to 50% compared with the untreated negative control)
Our testing partner is Cutest, a human volunteer CRO based in Cardiff, UK.

In vivo irritation testing (patch testing) uses the principle of maximising exposure of products to the skin under occlusion for multiple days.

- Highly sensitive methodology to detect weakly irritant products.
- The method ensures products in critical applications are unlikely to cause irritation under normal use.
Determining the correlation between *in vitro* and *in vivo* results – some examples

1. SURFACTANTS
2. SURFACTANT BLENDS
3. SURFACTANT FORMULATIONS
4. FACE MASKS
In vitro irritation potential of 4 surfactants

Test items (0.3%, pH 4.7) at 1, 5, 18, 24, 48hrs

Irritancy classification:

- **C** = SLS: Moderate to Mild
- **A** = SLES: Moderate to Mild
- **B** = CAPB: Non-Irritant
- **D** = Novel surfactant: Non-Irritant

Rank order of irritancy using linear extrapolation and logic equation

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET50</td>
<td>9.37</td>
<td>10.25</td>
<td>29.4</td>
<td>38.08</td>
</tr>
</tbody>
</table>

Irritancy classification:

- C = SLS: Moderate to Mild
- A = SLES: Moderate to Mild
- B = CAPB: Non-Irritant
- D = Novel surfactant: Non-Irritant
Using same 4 surfactants to determine the correlation with *in vivo*

<table>
<thead>
<tr>
<th>Rank order of irritancy</th>
<th>Cumulative irritation scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepanol WA (SLS) ®</td>
<td>16</td>
</tr>
<tr>
<td>SLS 70%</td>
<td>14</td>
</tr>
<tr>
<td>SLES 70%</td>
<td>9</td>
</tr>
<tr>
<td>Cocamidopropyl Betaine</td>
<td>4</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
</tr>
<tr>
<td>Novel Surfactant</td>
<td>0</td>
</tr>
</tbody>
</table>

- 3 cohorts of volunteers
- Expert clinical scoring of erythema by nurses
- Clinical scoring matches *in vitro* predictions
In vitro irritation potential of surfactant blends commonly used in personal care products

ET50 determination of surfactant blends

Rank order of irritancy using linear extrapolation and logic equation

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET50</td>
<td>1.82</td>
<td>3.85</td>
<td>5.59</td>
<td>9.01</td>
</tr>
</tbody>
</table>

IRRITANCY CLASSIFICATION

C = SLES / CAPB blend 3: Moderate
A = SLES / CAPB blend 1: Moderate
B = SLES / CAPB blend 2: Moderate to Mild
D = SLES / CAPB blend 4: Moderate to Mild
Clinical scoring matches *in vitro* predictions

In vivo irritation potential of surfactant blends (SLES / CAPB)

<table>
<thead>
<tr>
<th>Rank order of irritancy</th>
<th>Cumulative irritation scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (SLS 70%)</td>
<td>12</td>
</tr>
<tr>
<td>C (SLES/CAPB blend 3)</td>
<td>4</td>
</tr>
<tr>
<td>A (SLES/CAPB blend 1)</td>
<td>3</td>
</tr>
<tr>
<td>B (SLES/CAPB blend 2)</td>
<td>0</td>
</tr>
<tr>
<td>D (SLES/CAPB blend 3)</td>
<td>0</td>
</tr>
<tr>
<td>Control (E45 Cream)</td>
<td>0</td>
</tr>
</tbody>
</table>
Mild surfactant formulations (shampoos) *in vitro*

ET50 determination of TA1-4

Rank order of irritancy using linear extrapolation and logic equation

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET50</td>
<td>1.65</td>
<td>8.33</td>
<td>8.57</td>
<td>8.94</td>
</tr>
</tbody>
</table>

IRRITANCY CLASSIFICATION

- **A = new mild shampoo 1:** Moderate to Mild
- **B = new mild shampoo:** Moderate to Mild
- **C = new mild shampoo:** Moderate to Mild
- **D = best-selling standard shampoo:** Moderate
Mild surfactant formulations (shampoos) *in vivo*

CLINICAL SCORES

<table>
<thead>
<tr>
<th>Rank order of irritancy</th>
<th>Cumulative irritation scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>21</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>E (E45 Cream)</td>
<td>0</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
</tr>
</tbody>
</table>

Clinical scoring matches *in vitro* predictions
Face mask comparison \textit{in vitro}

ET\textsubscript{50} determination of 3 face mask formulations

- **Percentage of viability relative to untreated control**
- **Time (h)**

Rank order of irritancy using linear extrapolation and logic equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>></th>
<th>A</th>
<th>></th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET\textsubscript{50}</td>
<td>12.86</td>
<td></td>
<td>14.42</td>
<td></td>
<td>>48</td>
</tr>
</tbody>
</table>

IRRITANCY CLASSIFICATION

- **B = face mask 2:** Very mild
- **A = face mask 1:** Very mild
- **C = face mask 3:** Non-irritating

Face mask C is the mildest product using this method
CLINICAL SCORES

<table>
<thead>
<tr>
<th>Rank order of irritancy</th>
<th>Cumulative irritation scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D (E45 Cream)</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
</tbody>
</table>

Clinical scoring matches *in vitro* predictions
Conclusions and future work

- *In vitro* data accurately predicted the rank order of human *in vivo* clinical scores in all cases and, for industry case studies, matched expectations of the manufacturers

- 2 peer reviewed papers in preparation
 - Method optimisation
 - Industry applications

- We now want to grow the *in vitro* database to a wider range and number of products and ingredients, expanding further on the benchmarking capacity of the test

- Widen the use of the model as a pre-screen for baby care products, as a prelude to human patch tests and dermatologist led clinical studies
Real world applications
Building an *in vitro* database

BENCHMARK INGREDIENTS AND PRODUCTS

- Highly sensitive results show micro differences in levels of mildness for the first time
- Mildness of soaps can be compared to facial cleansers, to reassure consumers who want less plastic packaging without affecting performance
- Mass market best-sellers can be compared to luxury brands
- Mildness of soap vs facial cleanser within the same brand family can be compared
- Similar study recently completed on baby care products

Soaps

Facial cleansers

This product is 8 times more expensive than its neighbour, but is equally ultra-mild

Products above this line are classed as Non-Irritant, the mildest classification available

These 2 products are from the same brand but the soap is notably milder

This media favourite claims its low pH levels make it milder than other soaps

ET-50
A variety of applications

- **Ingredients:**
 - Assessment of novel biosurfactants and other ingredients to assess mildness compared with other manufacturers and traditional materials

- **Formulations:**
 - *In vitro* benchmarking of new products against other brands or in-house formulations in development
 - Growing database for benchmark values currently includes:
 - ✓ Facial soaps
 - ✓ Facial cleansers
 - ✓ Face masks
 - ✓ Moisturisers
 - ✓ Body soaps
 - ✓ Shower gels
 - ✓ Sunscreens
 - ✓ Deodorants
 - ✓ Baby care products (oils, lotions, shampoos, bubble baths)
Why use *in vitro*?

- Lower cost
- Faster turnaround
- Standardised conditions
- Strong database of reference values for benchmarking the mildness of ingredients and formulations both within and between brands
- Ethical advantages: limits human exposure, whether used as stand-alone test or pre-screen to clinical studies
- Marketing / consumer appeal: lab data, vegan-compliant “cruelty-free”*
- Brand differentiation: positive message using latest test methods. Moves beyond “not tested on animals”* to using latest technologies to demonstrate product safety and efficacy, going beyond the minimum requirements

* *In vitro* XtraMild test now available from XCellR8

Use of these phrases now limited by new EU claims guidance. But “not tested on animals” should never mean “not tested at all”
Thank you to the following companies who have participated in this research, and to Innovate UK for funding the work.
Thank you!

Dr Carol Treasure
carol.treasure@x-cellr8.com
www.x-cellr8.com

@XCellR8_Labs
XCellR8 Ltd, Dr Carol Treasure